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Abstract. Eigenspectra of the critical quantum Ashkin-Teller and Potts chains with free 
boundaries can be obtained from that of the X X Z  chain with free boundaries and a 
complex surface field. By deriving and solving numerically the Bethe ansatz equations for 
such boundaries we obtain eigenenergier of X X Z  chains of up to 512 sites. The conformal 
anomaly and surface exponents of the quantum X X Z ,  Ashkin-Teller, and Potts chains are 
calculated by exploiting their relations with the mass gap amplitudes as predicted by 
conformal invariance. 

1. Introduction 

Statistical mechanical systems with short-range interactions are believed to be confor- 
mally invariant at criticality (Polyakov 1970, Belavin et a1 1984). In two dimensions 
this assumption has many significant implications (for a review see Cardy (1987)). 
In particular, the mass gap amplitudes associated with the asymptotically merging 
levels in the eigenvalue spectrum of the transfer matrix, or associated Hamiltonian, in 
a finite strip are related to the anomalous dimensions of the operators describing the 
critical behaviour of the infinite system (Cardy 1984a, 1986a). Using these relations 
the critical exponents of the three-state Potts model (von Gehlen er a1 1986, von Gehlen 
and Rittenberg 1986a, b),  four-state Potts and Ashkin-Teller models (Alcaraz m d  
Drugowich de  Felicio 1984, von Gehlen e l  a1 1986, von Gehlen and  Rittenberg 
1986c, 1987) have been calculated from the eigenspectra of chains of length up  to 
10-13 sites, depending on the model. 

Recently, Alcaraz et a1 (1987a,b) showed that the eigenspectrum of both the 
quantum Ashkin-Teller (Kohmoto el a1 1981 1 and q-state Potts Hamiltonians on chains 
of M sites, with periodic or twisted boundary conditions, can be obtained exactly at  
criticality from the eigenspectrum of a 2 M-site quantum X X Z  chain with appropriate 
boundary conditions. By numerically solving the Bethe ansatz equations for the 
eigenenergies of the X X Z  chain they were able to calculate mass gap amplitudes in 
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the Ashkin-Teller and Potts models for chains up  to 512 sites, thereby considerably 
improving previous numerical estimates of the bulk critical exponents and allowing 
an  examination of the dominant finite-size corrections. 

In this paper we consider the quantum Ashkin-Teller and  Potts chains with free 
boundaries. The X X Z  chain appropriate for our analysis is defined by the Hamiltonian 
(Alcaraz et a1 1987a, b)  

H x x z  = - 3 1 (a,' a;+ I + a,' a,'+ I + Aa:a:+ I ) + icu (af - a:) ) 
I(::: 

(1.1) 

where a:, a:, a: are Pauli matrices, A = -cos y and cu =sin  y are coupling constants 
with y E [0, T). We observe that although the Hamiltonian (1.1) is not Hermitian the 
eigenenergies are real since (1.1) is invariant under complex conjugation and reflection 
symmetry (relabelling sites from right to left). The eigenenergies of the above Hamil- 
tonian with L =  2M sites and free ends ( a  = 0) are exactly related (Alcaraz et a1 
1987a, b)  to those of the self-dual M-site quantum Ashkin-Teller chain with Hamil- 
tonian (Kohmoto et al 1981) 

Here U:,  a: and r;,  T: are two commuting sets of Pauli matrices (a;+1 = T:+, = O ) .  As 
in the X X Z  chain, A = cos y, y E [0, 7r] is a coupling constant and  in the bulk limit the 
model is massless with a line of continuously varying exponents. When a temperature- 
like variable is introduced in (1.2) the phase diagram exhibits, apart from ferromagnetic 
and paramagnetic phases, a massless disordered phase. The region -1 / J2  S A s 1 
describes the critical surface separating the ferromagnetic and paramagnetic phases 
while -1 s A s -1/d2 are points inside a massless critical phase (Kohmoto et a1 1981). 

On the other hand the eigenenergies of a 2M-site X X Z  Hamiltonian ( l . l ) ,  with 
couplings y = cos- ' ( Jq /2) (q  = 2,3 ,4)  are exactly related (Hamer 1981, Alcaraz et al 
1987a, b) to the eigenenergies of an  M-site self-dual q-state quantum Potts chain with 
free ends (S,,, = O), defined by the Hamiltonian 

1 M 4-1 

H q = - -  C C (S;Sp,;k+Rf)+(2M-l)J;j/4 (1.3) 
J ; f 1 = 1  h = O  

where S, and R, are q x q matrices satisfying the Z ( q )  algebra 

[R,,  4 1  = [S, ,  S,l = [ S , ,  R,l= 0 

SIR, = exp(i27r/q)RjS, 

i#j 

RP = Sf = 1. 
(1.4) 

For general values of y, (1.1) describes the Hamiltonian analogue of the continuous 
( 0 s  q s 4) q-state Potts model (Alcaraz er a1 1987a, b) .  

The Bethe ansatz equations for the Hamiltonian (1.1) with a = 0 have been derived 
by Gaudin (1971, 1983). In the next section we derive Bethe ansatz equations for the 
free X X Z  chain with an  arbitrary 'surface' field at each end of the chain. By numerically 
solving these equations for the X X Z  chain (1.1) we obtain eigenenergies, for M up  
to 256, of the quantum Ashkin-Teller (1.2) and Potts (1.3) chains. In this way accurate 
estimates are obtained in § 4 for the surface exponents of the models from the 
predictions of conformal invariance. 
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2. Bethe ansatz 

Rather than directly considering the Hamiltonian (l.l), we define a more general 
Hamiltonian by 

H x x z  = - 1 (:I: C ( u;u,'+ I + a,' a,'+ I + A ~ y a f ,  + paf + p ' a :  ) (2.1) 

where A,  p and p '  are arbitrary constants. Since this Hamiltonian commutes with the 
total spin operator E a L ,  the number of down spins n is a good quantum number. We 
therefore consider 

where 
H l n )  = E l n )  (2.2) 

In) = C f ( x 1 ,  * .  . , xn)lx, ,  . . . ,  xn). (2.3) 
Here the x,, . . . , x ,  denote the locations of the down spins on the chain, and the 
summation extends over all sets of the n increasing integers varying between 1 and L 
(see, e.g. Gaudin 1983, Baxter 1982, ch 8) 

1 zs x ,  < x2 <. . . < x ,  zs L. 

2.1. n = l  
For one down spin on the chain, the eigenvalue equation (2.2) gives 

Ef( X )  = -f( x - 1) -f( x + 1) - +[ ( L  - 5)A + p + p']f( X )  x = 2, . . . , L - 1. 

At the boundaries, we get slightly different equations 

Ef( 1) = -f(2) - f[ ( L - 3 ) A  - p + p ' ] f (  1 ) 

Ef(L) = -f( L - 1) - f[ ( L  - 3)A + p - p ' ] f (  L ) .  
We now try as a solution 

f ( x )  = A( k )  eikX - A( - k )  e-ikx, 

Substituting this in equation (2.5) we obtain the eigenvalue 

E =-2 COS k- f [ (L-5 )A+p+p' ] .  

(2.4) 

(2.5) 

(2.6~) 

(2.6b) 

(2.7) 

(2.8) 
We want equation (2.5) to be valid for x = 1 and x = L also, wheref(0) a n d f ( L +  1) 

f(0) = ( A - P If( 1 1 (2.9~) 

f(L+ 1) = ( A - P ' M L ) .  (2.96) 

are defined by (2.7). Combining (2.5) and (2.6) we get the end conditions 

Defining the functions a ( k )  and P ( k )  by 

a ( k ) =  1 + ( p - A ) e - l k  

p (  k )  = [ 1 + ( p '  -A) e-!'] e ' (L+ ' )k  

and  substituting (2.7) in (2.9), we obtain 

A( k ) a (  - k )  - A (  --k)a( k )  = O  

A( k ) P (  k )  - A( - k ) P ( -  k )  = 0. 

Compatibility between (2.1 la) and (2.1 lb) yields 

(2.10~) 

(2. lob) 

(2.11u) 

(2.11b) 
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or, using (2.101, 

e ~ 2 ( L - l ) k  (elk + p  -A)(eIk + p ' - A )  
(e-'k + p  - A)(e-Ik + p f  - A) = '' (2.13) 

In the special case where the constants satisfy 

( A  - p ) (  A - p ' )  = 1 (2.14) 

(2.13) reduces to 

(2.15) ei2Lk - - 1. 

Given the compatibility relation (2.12), the solution of (2.11) for A ( k )  is 

A ( k )  = P ( - k )  (2.16) 

where it should be noted that A( k )  is determined up  to a factor that is invariant under 
k H - k .  

2.2. n = 2  

For two down spins on the chain, we obtain the eigenvalue equation 

&-(XI, x2) = -Ax, - 1, x2) 1, x2) - f (x , ,  x2- 1) - f (x , ,  x2+ 1) 

- t [ ( L  - 9)A + p  +p'If(x1, x2). (2.17) 

We now also get the usual 'meeting condition' that arises because the two down spins 
may be neighbours (Gaudin 1983) 

f (x l ,X l )+ f (x l+ l ,  ~ l + l ) - 2 A f ( ~ l ,  x I + l ) = O .  (2.18) 

In  addition to this, as in the case n = 1, we have two conditions to be satisfied at the 
free ends of the chain 

(2.19a) 

(2.19b) 

Guided by the n = 1 case we consider the ansatz 

f (x , ,  x2) = 1 E ~ A ( ~ ~ ,  k2) e ' ' k l ' l + h ~ x ~ i  (2.20) 
P 

where the sum extends over the permutations and the negations of k ,  and k 2 ,  and 
is a sign factor ( i l )  that changes sign on negation or  pair interchange. Substituting 
this ansatz in (2.17) we obtain the eigenvalue 

E = - ~ c o s  kl- COS k,-$(L-9)A+p+p'] .  (2.21) 

s ( k , ,  k z )  = 1 - 2 ~  e ' k~+e"k~+ ' : '  

Defining the function s ( k , ,  k2) by 

(2.22) 

necessary conditions for the equations (2.18) and (2.19) to be satisfied are 

A(ki, k , ) s ( k i ,  k,)-A(k?, k i ) s ( k ? ,  k , ) = O  (2.23a) 

A(ki, kz)a(-k,)-A(-ki,  k , ) a ( k i ) = O  (2.23b) 

A(ki, k2)P(k,)-A(ki, -k2)P(-k2)=0 ( 2 . 2 3 ~ )  
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together with nine other equations that can be obtained from (2.23) by applying 
permutations and  negations. Using (2.23a),  (2.23c), ( 2 . 2 3 ~ )  and (2.23b) to successively 
express A ( k , ,  k 2 )  in terms of A(k2,  k , ) ,  A ( k 2 ,  - k , ) ,  A ( - k , ,  k 2 )  and A ( k , ,  k , ) ,  the fact 
that the prefactor we pick up  along the way is unity leads to 

(2.24) 

where B ( k ,  k ' )  is given by 
B ( k ,  k ' ) = s ( k ,  k ' ) s ( k ' ,  - k ) .  (2.25) 

Using (2.10) we may rewrite the compatibility condition (2.24) as 

(2.26) 

Since there are eight functions that can be obtained from A ( k , ,  k , )  by permutations 
and negations, it follows that there are eight compatibility equations to be satisfied, 
each analogous to (2.26). It is not difficult to see, however, that (2.26) is invariant 
under kl - - k ,  and k ,  - - k ,  (in fact, if k ,  # 0, (2.26) can be written as a polynomial 
equation in terms of cos k ,  and cos k ,  only), so permuting k ,  and k,  results in just one 
more equation 

(2.27) 

Again in the special limit (2.14), there is some simplification in these equations, the 
left-hand sides of (2.24) and (2.27) reducing to exp( i2 tk , )  and exp(i2lk,), respectively. 

In  principle, the coupled equations (2.26) and (2.27) give k ,  and k z  which in turn 
give the corresponding eigenvalue through (2.21). We now turn to the coefficient 
A(kl ,  k,)  in the wavefunction (2.20). From ( 2 . 2 3 ~ )  we have 

A(ki ,  k,)  = s ( k , ,  k , ) C ( k i ,  k2) (2.28) 
where C ( k , ,  k , )  is symmetric under k , -  k2.  In order to determine C ( k , ,  k 2 ) ,  we 
substitute (2.28) in (2.23c), obtaining 

C ( k , ,  k , )  = P ( - k , ) u ( k , ,  k , ) g ( k , )  (2.29) 
where the symmetric function u ( k , ,  k , )  is defined by 

v ( k , ,  k 2 )  = e-'&, + e-"2 - 2A. (2.30) 
The factor g ( k , )  is determined from the symmetry of C ( k , ,  k, )  under k ,  - k,, resulting 
in 

(2.31) C(ki, k , )  = P(-k i )P( -k , )u (k i ,  k , ) .  
Finally, substitution of (2.31) into (2.28) leads to 

A ( k , ,  k 2 )  = P ( - k , ) P ( - k 2 ) B ( - k , ,  k 2 )  e-'A? (2.32) 
where B ( k ,  k ' )  is defined in (2.25). 

2.3. General n 

The above can be generalised to arbitrary values of n. The ansatz for the wavefunction 
becomes 

(2.33) f ( x , ,  . . . , x , )  = E  E ~ A ( ~ , ,  . . . , k , )  e"klrl+ * k ~ ~ r d  
P 
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where the sum extends over all permutations and negations of k l ,  . . . , k ,  and e p  changes 
sign at each such ‘mutation’. The coefficients in the wavefunction are given by 

” 
A ( k , ,  . . . , k , )  = fl P ( - k , )  n B ( - k l ,  k , )  e-’hf (2.34) 

) = I  I = I <  I S  n 

where B ( k ,  k ’ )  is defined in (2.25) and (2.22). The parameters k , ,  . . . , k,  satisfy 

$1 

with a ( k )  and P ( k )  defined in (2.10). The eigenvalues E are given by 
n 

E = - i [ ( L - l ) A + p + p ’ 1 - 2  (COS kl-A).  
, = I  

(2.35) 

(2.36) 

Returning to the Hamiltonian ( l . l ) ,  the two cases of interest are p = p ’ = O  and 
p = - p ‘ =  ia with A = -cos y and a = sin y, y E [0, 7 ) .  For both cases the eigenenergies 
are given by 

n 

E = - -  ; ( L - l ) A - 2    COS^,-A). (2.37) 

Taking the logarithm of (2.35) (see, e.g., Baxter 1982), the parameters k, ,  j = 1 , .  . . , n 
satisfy 

j = l  

( L + l ) k J = d , - O ( k l ,  - k , ) ) - $  [@(IC,, -k,)+O(kJ, k , ) ]  (2.38) 
/ = I  
fl 

for the Ashkin-Teller case ( a  = 0) and 

L k , = r ! , - $  C [ O ( k l , - k / ) + O ( k l , k , ) ]  (2.39) 

for the Potts case ( A 2 +  a’ = 1 ) .  The phase factor appearing in these equations is the 
same as that for the periodic case (Yang and Yang 1966), namely 

/ = I  
’ I  

A sin( k - k’)/2 
(cos( k + k’)/2 - A  cos( k - k’)/2 

@( k, k ’ )  = 2 tan-’ (2.40) 

From the numerical evidence (see below), the lowest state in a given sector is 
obtained by choosing the integers I, = j, j = 1 ,  . . . , n, as earlier surmised by Gaudin 
(1971, 1983). We now proceed to evaluate the ground state energy per site in the limit 
L+cC. 

2.4. Thermodynamic limit f o r  IAi < 1 

Define 

p(a,  b )  = -i In (sinh(b - a) /2 )  
sinh( b + a ) / 2  ’ 

Taking A = -cos y, y E (0, 7 )  and setting 

P = ip(iy, ln(p-A))  

P’ = ip( iy, In( p ’  - A ) )  

(2.41) 

( 2 . 4 2 ~ )  

(2.42b) 
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the transformation k, -+ cp(a,, iy)  transforms (2.35) into 

2Lcp(a,,iy)+(o(a,, P)+cp(a , ,  P’)=2n!, 

f /  

with I ,  = j and n = L/2 for the ground state. Although the equatTons (2.43) are not in 
the usual difference form (Baxter 1982) it is interesting to observe that they still describe 
the extremum of a function x of the n variables aJ (Yang and Yang 1966): 

n 

x(a,, . . . , a n )  = C [ 2 L $ ( a J u , ,  i r ) +  $(a,, PI+ $(a,, P’) -2nI,a,I 
/ = I  

(2.44) 

where the function 9 is defined by C L ’ =  cp. 
For large L we assume that the a, become evenly distributed in some fixed interval 

( 0 , Q ) .  Let the number of aJ lying between a and a + d a  be Lp(a)  da. Taking the 
limit L + CO and differentiating (2.43) with respect to a we then have 

i ;p(a)=cp~(a, iy)- j~oQp(P)[cp’(a-P, i2y)+cp~(n+P,i2y)ldP.  (2.45) 

Since p and cp‘ are even functions (2.45) can be written as 

where Q is determined by 
r 0  
J p ( a j  d a  = n/L. 
0 

Setting Q = CO the density of zeros is thus 

(2.46) 

(2.47) 

(2.48) 

(this is twice the density that is obtained for the periodic case). The energy per site 
in this limit is the same as for the periodic chain (Yang and Yang 1966) 

e,(y)= lim (E/L)=;cos  7 -2  p(a)[coshcp(a,iy)+cos y3da 

dx 
L - 2  i: 

=;cos y-2sin * y I,’cosh(~x)[cosh(2yx) -cos y] 
(2.49) 

with 

e,( 0) = f - 2 In 2. (2.50) 

3. Conformal anomaly and surface energy 

Cardy (1984a) has derived a set of important relations involving surface exponents by 
conformally transforming a given statistical model in the half plane into a strip of size 
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M. In the case of the Hamiltonian formalism these relations can be stated as follows. 
To each surface exponent x, of the infinite system (Binder 1983, Cardy 1987) there 
corresponds a set of states in the finite free boundary Hamiltonian on M sites with 
energies, at the bulk critical point, given by 

E,(M,  r )  = Eo( M ) +  .rr<(x,+ r ) /  M +o(  M-’) r = O ,  1 ,2  , . . . .  (3.1) 
Here E,(M) is the ground state energy of the finite chain and is a constant which 
is usually unity in the transfer matrix formalism but for Hamiltonians is model 
dependent (Alcaraz and  Drugowich d e  Felicio 1984, von Gehlen et a1 1986). The 
conformal anomaly c of the appropriate conformal class of the bulk transition governs 
the dominant universal finite-size corrections in the ground state energy per site (Blote 
et a1 1986, Ameck 1986) 

.i; .rrlc +o(M-’ )  E,(M)/M = ex+--- 
M 24M’ 

(3.2) 

where e ,  and f, are, respectively, the bulk limits of the ground state and  surface 
energy per site. 

The main numerical computations presented in this paper were achieved by solving 
equations (2.38) and (2.39). We obtained, in this way, several eigenenergies in the 
various sectors of (1.1) for chain size up  to L=512.  These eigenenergies were then 
identified with the corresponding levels in the models (1.2) and (1.3) on M = L/2 sites. 
To make this comparison, the Bethe ansatz results for small L were compared with 
the results obtained by directly diagonalising (1.2) and  (1.3) with the Lanczos method. 
(In the case of the q-state Potts model with q # 2 , 3 , 4  we simply assume that the 
corresponding states are the analytic continuation of those occurring in (1.2).) For 
the remainder of this paper we use the eigenenergies of models (1.2) and (1.3) calculated 
through (1.1) and the relations (3.1) and (3.2) in order to obtain the surface exponents 
and conformal anomaly of all three models. 

Before applying (3.1) and  (3.2), however, we need to identify the factor 5 for the 
models under consideration. This same factor occurs in the analogous relations for 
the periodic boundary condition case. From the large-L behaviour of the ground state 
energy of the periodic X X Z  model (Hamer 1985, 1986) we identify for (1.1) the value 

sxxz  = 57 sin rlr. (3.3) 

Use of the relations between (1.1) and the Ashkin-Teller (1.2) and Potts (1.3) models 
(Alcaraz et a1 1987a, b) then leads to 

It is gratifying to observe that the earlier numerical estimates (von Gehlen et a1 1986, 
von Gehlen and Rittenberg 1986a, b, c, 1987) of lAT and Jq are in good agreement with 
the exact values given in (3.4). 

As typical examples of our numerical computations we show in table l ( a )  the 
ground state energy per site for M = 2‘, 1 = 2 ,3 , .  . . ,8 ,  of the Ashkin-Teller model with 
couplings A = -4312, -112, 112, 1/d2, and d3/2.  The corresponding results for a 
2M-site X X Z  chain can be simply obtained by exploiting the equivalence between 
(1.1) and (1.2) (in particular, A = - A ) .  In table l ( b )  we similarly show the ground 
state energy per site of the q-state Potts model for q = 2, 3, 3.414. , .(4 cos2(T/8)), 
3.618.. .(4 cos2(.rr/10)) and  4. 
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Table 1. The ground state energ) per site of the quantum ( a )  Ashkin-Teller chain and ( b )  
q-state Potts chain. Exact \slues denoted by * are given by doubling 12.49). The extrapo- 
lated results ( + )  were obtained from the sequence M = 4, 6, 8,. . . , 60 (see text) .  

( a )  

4 -0.898391 
8 -0.955665 

16 -0.984695 
32 -0.999322 
64 -1,006662 

128 -1.010339 
256 -1.012 179 
eh -1.014020.. 
f: 0.471 568 
c' 0.999 99 (6 )  

-0.999 749 
- 1.047 739 
-1.072 596 
-1.085 256 
-1.091 646 
- 1.094 856 
- 1.096 465 
-1.098 0 7 6 . .  

0.412 883 
0.999 99 (5) 

-1.421 625 
- 1.458 847 
- 1.478 866 
- 1.489 283 
- 1.494 602 
-1.497 291 
- 1.498 643 
-1.5 

0.348 076 
1.000 0 13) 

-1.527916 
- 1.565 672 
-1.585 976 
- 1.596 544 
-1.601 942 
- 1.604 672 
- 1.606 045 
- 1.607 423 . 

0.353 553 
1.000 0 ( I )  

--1.613 182 
-1.652 109 
-1.673 022 
- 1.683 900 
- 1.689 456 
- 1.692 265 
--1.693 677 
-1.695 0 9 5 . .  . 

0.363 777 
1.00 ( 5 )  

M q = 2  q = 3  q=3.414 . . .  q=3.618 . . .  q = 4  

4 
8 

16 
32 
64 

128 
256 
e5  
f: 
Ci 

C 

- 1.459 958 
-1.532 473 
-1.569 617 
-1.588 434 
- 1 .597 906 
- 1.602 659 
- 1.605 040 
- 1.607 423. . . 

0.610 502 
0.500 00 ( I )  
0.5 

-1.580754 
-1.636 076 
- 1.665 066 
- 1.679 942 
- 1.687 482 
-1.691 279 
-1.693 185 
-1.695 095.. . 

0.489 637 
0.799 9 ( 2 )  
0.8 

- 1.626 304 
-1.675 238 
-1.701 131 
-1.714 489 
- 1.721 28 1 
- 1.724 706 
- 1.726 427 
-1.728 152.. . 

0.442 487 
0.89 (3 )  
0.892 857.. . 

~~ 

-1.647 982 
- 1.693 900 
-1.718 317 
- 1.730 948 
-1.737 379 
- 1.740 626 
- 1.742 257 
-1.743 893.. 

0.419 717 
0.93 (5)  
0.933.. . 

- 1.687 466 
-1.727 934 
-1.749 664 
-1.760 964 
-1.766 733 
-1.769 650 
-1.771 116 
-1.772 588 

0.377 649 
0.99 ( 2 ) 
1 .o 

To compute the conformal anomaly from (3.21, we need first to estimate the 
(non-universal) surface energy fr. We have done this using Van den Broeck and 
Schwartz (1979) approximates to extrapolate the sequence 

with e ,  being obtained from the exact result (2.49). The resulting estimates are quoted 
in table 1 and are believed to be accurate to the number of digits quoted. With fa 
thus estimated, we can then estimate the conformal anomaly c by similarly extrapolating 
the sequence 

c ( M ) =  -[Eo(M)-Me,-f,]24M/~[. (3.6) 
The resulting estimates, again obtained by Van den Broeck and Schwartz approximates, 
are shown in table 1. From the table, we clearly see that c = 1, independent of A and 
A, for the X X Z  and Ashkin-Teller models which is expected due to their non-universal 
behaviour. We also see for the Potts chain that c = i, $, $, and 1 for the respective 
values of q. (The poorer convergence as q nears 4 is a result of the correction terms 
in (3.2) increasing with importance in this limit, in particular logarithmic corrections 
appear at q = 4 (Cardy 1986b, Woynarovich and Eckle 1987, Alcaraz et a f  1987a, b).) 
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These values agree with the predicted values from conformal invariance (Dotsenko 
1984, Cardy 1987). They are well accounted for by the expression (Alcaraz et a1 
1987a, b) 

y = c o s - ' 4 / 2 .  (3.7) 
6 

c ( q ) = l -  
( r / Y ) ( r / Y  -1) 

The Bethe ansatz equations (2.39) decouple at the value y = 7r/2 corresponding to 
the q = 0 limit. This limit further corresponds to the Hamiltonian analogue of a resistor 
network (see, e.g., Wu 1982). From (2.37) the ground state energy per site is exactly 
given by 

r 
Eo/ M = - 2 f i  cos - 1 -t - cosec - :( i) 4 M  (3.8) 

which on expressing in powers of 1 / M  and comparing with (3.2) yields the exact 
valuesf% = 1 and c = -2. In  the q = 1 limit (percolation) we have y = r / 3  and  although 
we are unable to solve (2.39) analytically our numerical results are reproduced for all 

(3.9) 

which gives e, = -$, fx = $ and c = 0. It is interesting to observe that these results also 
fit the formula (3.7). This equation can be expressed in the standard form (see, e.g., 
Cardy 1987) by identifying r/ y = m i  1. We see that c = - 2  and c = 0 respectively 
correspond to the values m = 1 and m = 2. 

M by 
E,/ M = -$( 1 - 1 / 2 M )  

4. Surface exponents 

We now turn to the surface exponents of the models under consideration. Let us 
consider initially an  L-site XXZ model with free boundaries (equation (1 . l )  with 
cy = 0 ) .  It is convenient here to label the sectors by the number n, defined by +t = L / 2  - n, 
representing the number of over-turned spins from the antiferromagnetic ground state 
( n  = L/2). Associated with the lowest energy E t '  in each sector we have a surface 
exponent xh"', which may be estimated from the sequence (recall (3.1)) 

(4.1) 

where Eho' is the ground state energy and i is given in (3.3). For n = 1 , 2 , .  . . these 
dimensions govern, respectively, the decay of the spin-spin, energy-energy, . . . correla- 
tions. In table 2 we show, for several values of A = -A,  the extrapolated values of the 
above sequence. Our results strongly suggest that these exponents are given by 

xj"' = 2n2xp 1z = 1,2,  . . . (4.2) 
where xp = (r - y ) / 2 r  is the anomalous dimension of the bulk polarisation operator. 
In comparison, the corresponding scaling dimensions for the bulk correlation functions 
are given by x ' * )  = n 2 x p ,  12 = 1 , 2 , .  . . (Alcaraz et a1 1987a, b).  

For the case of the Ashkin-Teller chain the Hamiltonian (1.2) is invariant under 
2 ( 2 ) 0 2 ( 2 )  internal symmetry as well as possessing reflection symmetry. The Hilbert 
space decomposes into eight sectors with corresponding energies E:Q,p' where Q = 
0, 1,2,3,  P = * and r = 0, 1,2,  . . . . The sectors with Q = 1 and Q = 3 are degenerate 
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Table 2. Extrapolated and expected results for the leading surface exponents of the X X Z  
and Ashkin-Teller chains. 

xi2,-’ A x:” ~ x ~ l . + ’  x121 x:” xi‘,-’ xi2.+’  

- J3 /2  0.166666 (9)  0.666666 ( 5 )  
ct, (3, 

( f )  (3) 

(3, (B 

($1 ( 3 )  

1 
2 0.333 333 (3) 1.333 33 (8) 

2 0.666 6 (7) 2.666 ( 8 )  

1 / J 2  0.75000(7) 2.9999 (3) 

_ -  

I 

1.50000 (3) 

3.000 0 ( I  1 
( 3 )  
6.000 (2)  
(6) 
6.749 ( 7 )  

(3 

(T) 

1.16 (4) - - 

1.333 33 ( 5 )  1.000 00 (6) 2.000 00 (4) 

1.666 6 (5)  1.0000 (7) 2.000 (2) 

1.750 0 (4)  1.000 0 (4) 1.999 9 (9) 

(2) 

(41 (1) (2)  

(3 (11 (2) 

(3 ( 1 )  (2) 

due  to the global symmetry a(37 in (1.2). In each of these sectors we identify the 
corresponding surface exponent x : ‘ * ~ )  from the sequence 

with 5 given by (3.4). These sequences are listed in table 3 for the particular value 
A = and chain sizes M = 2‘ for 1 = 2,3,  . . . ,8 .  Extrapolated results for several A values 
are given in table 2. We observe from these results that xiQ+-’ = xLQ3+’+ 1, implying 
that for a given charge Q, the ground state in the positive (negative) parity sector 
corresponds to the first (second) state in the tower of states given in (3.1). In agreement 
with earlier numerical results (von Gehlen and Rittenberg 1986c, 1987), our results 
clearly show that the surface exponents describing the magnetic and electric correlations 
x: = q r ’ 2  and x: = qi/2,  respectively, are given by 

( 0 0 ) = ( X - Y ) l . r r = ( 2 x c  1 for - 1 S h S l  (4.4) $ x:’.+’ 

x:= xi**+’(co) = 1 for - 1 / J z ~  A s I (4.5) 

AT - 1  

where x t T  is the anomalous dimension of the energy operator. The levels Er.’’ and 
E a 3 - ’  are both in the 12 = 0 ( n  = M )  sector of (1.1) with L = 2 M  and the integers 
I ,  chosen from { 1 , 2 , .  . . , n - 1, n + 1) and { 1 , 2 , .  . . , n - 2, n, n + l}, respectively. For 
both the Ashkin-Teller and  Potts models (see below) the levels Eh”” and Er.-’ occur 
in the IZ = 1 ( n  = M - 1) sector of (1.1) again with L = 2 M  but with respective integer 
sets {1,2, . . . , n }  and {1,2, .  . . , n - 1, n + 1). Unfortunately, due to numerical 

Table 3. Amplitude estimates (4.3) for the Ashkin-Teller chain at A = f .  

M T:’.+’( M )  x:’,-’( M )  .Y:’,+’( M j x y ’ c  M 1 

4 0.547 542 
8 0.596 800 

16 0.626 720 
32 0.644 236 
64 0.654 243 

128 0.659 859 
256 0.662 969 
Exact 7 

1.345 31 0.777 955 
1.496 16 0.880 264 
1.574 75 0.935 469 
1.616 43 0.965 016 
1.639 07 0.980 990 
1.65 1 54 0.989 687 
1.658 41 0.994 425 
2 1 

1.555 91 
1.760 53 
1.870 94 
1.930 03 
1.961 98 
1.979 37 
1.988 85 
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instabilities we are unable to compute the level in (1.1) corresponding to x: inside the 
critical fan region (-1 s A s -1/J2) .  

In the case of the q-state Potts model ( q  E Z )  the Hamiltonian (1.3) is symmetric 
under global Z (  q ) transformations and reflections of the lattice. Consequently the 
Hilbert space separates into 2q disjoint sectors with energies E:v3p) ( Q  = 0, 1, . . . , 
q - 1, P = *, r = 0, 1 ,2 , .  . .). The ground state lies in the sector labelled by Q = 0, 
P = +, ( r  = 0 )  while the sectors with Q # 0 are degenerate. In this case the leading 
surface exponent can be extracted by extrapolating the estimators (4.3) with Q = 1 and 
the corresponding given in (3.4). In table 4 we show the sequence x : ’ , + ’ ( L )  with 
M = 2 ‘ , 1 = 2 , 3  , . . . ,  8 for q=1 ,2 ,3 ,3 .414  . . . (  4cos’(a/8)),3.618 . . . (  4cos2(.rr/10)) and 
4. As in the Ashkin-Teller case we have also verified that xi’.-’ = x;’,+’+ 1 which as 
before implies that the lowest state in the negative parity sector corresponds to the 
second level in the tower of states characterising x,= v11/2= xl’’+)(w). All of the 
observed values are well accounted for by the expression 

x,= 1-2yl.ir q = 4 c o s 2  y (4.6) 
which agrees with the predicted value (Cardy 1984b) x, = ( m  - 1)/( m 1- l ) ,  m = 
1 , 2 , 3 , 5 , .  . . if we again identify a / y  = m + 1. In the limit q = 0, corresponding to 
m = 1, the Bethe ansatz equation (2.39) and (2.37) yield the exact equality Ebo3”(M) = 
E ; . + ’ ( M )  giving x,= vt l  = O  in agreement with (4.6). Again the convergence of the 
sequences deteriorates as we approach the limit q = 4 where the logarithmic corrections 
occur. The extrapolated value for q = 4 quoted in table 4 is obtained by assuming a 
logarithmic correction in (4.3) of the form predicted by Cardy (1986b). 

Table 4. Amplitude estimates (4.3), x : ’ , + ’ ( M ) ,  for the 9-state Potts chain.  

M 

4 
8 

16 
32 
64 

128 
256 
Extrapolated 
Exact 

9 = l  

0.310 468 
0.322 203 
0.327 900 
0.330 662 
0.332 012 
0.332 677 
0.333 006 
0.333 33 13) 
I 
7 

0.442 19 1 
0.469 919 
0.484 665 
0.492 260 
0.496 1 1  2 
0.498 051 
0.499 025 
0.50000 (0) 
I 

q = 3  4 = 3 . 4 1 4 . .  . 

0.546 487 0.585 170 
0.595 135 0.643 906 
0.624 763 0.681 940 
0.642 322 0.706 203 
0.652 588 0.721 662 
0.658 548 0.731 552 
0.661 992 0.737 920 
0.666 66 ( 9 )  0.749 ( 8 )  

3 
7 1 

~ 

q = 3.618 9 - 4  

0.603 466 
0.667 460 
0.710 179 
0.738 489 
0.757 377 
0.770 131 
0.778 858 
0.799 ( 6 )  
4 
c 

0.636 608 
0.710 956 
0.763 490 
0.800 955 
0.828 331 
0.848 934 
0.864 907 
0.99 ( 3 )  
1 
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Note added rn proof: After submitting this paper the conformal anomaly and  surface energy of the Potts 
and  Ashkin-Teller chains were derived exdctly by Hamer er a /  ( 1987) 
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